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An unsteady boundary layer on a rotating disk in a counter-rotating fluid was shown 
in Bodonyi & Stewartson (1977) to develop a singularity at the axis of rotation after 
a finite time. The structure proposed to describe the singularity is, however, incom- 
plete, even after an additional term was added by Banks & Zaturska (1981). A de- 
scription is given here in which the boundary layer is divided into three regions; this 
description seems to be free of the weaknesses of the earlier studies, and is in good 
agreement with data from the numerical solution of the governing equations. 

1. Introduction 
In the first paper with this title, Bodonyi & Stewartson (1977, hereinafter referred 

to as BS) examined the evolution of a laminar boundary layer on a finite rotating disk 
after its angular velocity R, originally the same as that of the ambient fluid, is reversed 
in sign at time t* = 0. It was shown that the boundary layer develops a singularity a t  
the axis when Rt* = t8, where t8 N 2-36, and an attempt was made to describe its 
structure in mathematical terms. However, there were certain discrepancies between 
the numerical results and the asymptotic expansion about Rt* = t8 which could not 
be resolved, so that a doubt persisted as to whether a correct description of the struc- 
ture of the singularity had been given. More recently, Banks & Zaturska (1981, here- 
inafter referred to as BZ) improved the expansion without altogether removing these 
doubts. The purpose of the present paper is to show that both analytic descriptions 
are significantly incomplete, but that the addition of certain new terms and a re- 
formulation of the structure enables a satisfactory correlation with the numerical 
work to be made. 

From the studies in BS it is clear that the singularity develops fist at the common 
axis of rotation of the fluid and the disk, and that in order to investigate its structure 
only the velocity components of the fluid near this axis need be considered. We define 
( v / Q ) i  z to be distance from the disk, where v is the kinematic viscosity, r the distance 
from the axis of rotation, and take the velocity components of the fluid in the radial, 
azimuthal and axial directions to  be 

(QrF,,  RrG, - 2 ( v Q ) t F ) .  
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Here F ,  a are functions of z and t = at* only, satisfying the differential equations 
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et = F , , + 2 F I r ’ , - F ~ + G 2 - l ,  

G, = G,,+ 2FG,- 2 G 4 ,  
( 1 . 2 ~ )  

(1.2b) 

where a suffix denotes a derivative. The initial and boundary conditions satisfied by 
F and G are 

F = Fz = 0, G = 1 at t = 0 for all x >, 0, ( 1 . 3 ~ )  

G = - l , F = F , = O  a t  z = O  forall t > 0 ,  (1.3b) 

G - t  1, F,+O as z - t o o  for all t 2 0. ( 1 . 3 ~ )  

2. The modified asymptotic expansion 
It was shown in BS that in the numerical solution of (1 .2)  both G and Fa become 

large as t -+ t,, apparently having asymptotic structures like (t,-t)-’. On this basis 
an asymptotic expansion about t = t ,  was developed for the solution, which, however, 
contained a serious misconception. This was that it is double-structured, with an inner 
region extending from the disk, z = 0, as far as z 2: 2n/a(t ,  - t ) ,  where a is a numerical 
constant. A study of the boundary layer on a heated horizontal cylinder carried out 
by two of us (Simpson & Stewartson 1982) showed conclusively that the unsteady 
boundary layer near the highest generator develops a singularity of a similar kind, 
in a numerical sense, but the structure is triple-layered. Its form is similar to that of a 
steady suction boundary layer on a rotating disk described by Ockenden (1972) and 
having a thick inviscid layer sandwiched between two thin viscous layers. The impli- 
cation for the present problem is that the inner layer is in two parts, and so the previous 
argument is incomplete. Consequently we shall carry it out ab initio and distinguish 
three regions near the axis when t , - t  is small, in each of which the solution has 
different properties. 

Region I :  z - 1 

At finite distances from the disk at x = 0 we assume that the solution is smooth for 
all t < ts and can be expanded as power series in 

7 = t,  - t .  
Thus 

m OD 

G = Z 7”Gn(z), F = Z rnFn(z), 
n=O n=O 

where G,(O) = - 1, Gn(0) = 0 if n 2 1, and Fn(0) = FA(0) = 0 for all n, a prime de- 
noting differentiation with respect to z. On the other hand we cannot expect that 
Go -t 1, FA --f 0 for all n ,  G, -t 0 for n 2 1 as z -t 00, since there are layers of structure 
above this one when r << 1 .  It is noted that, according to (2.2),  F and G can be found 
completely in terms of Fo and Go; however, we have little information a t  present 
about these functions except that their derivatives must satisfy certain compatibility 
conditions at z = 0. The match with the solution in region I1 will provide ad- 
ditional conditions on Fo and Go as z + 03, but otherwise Fo and Go must be regarded as 
arbitrary for the purposes of the analysis. The form of (2 .2)  implies that the skin- 
friction components G,(T, 0 )  and q z ( r ,  0 )  are smooth functions of T, and this is con- 
firmed by the numerical solutions of BS and BZ. Our present calculations also 
support this conclusion; indeed, although the values are slightly different from those 
previously given, me do not see the necessity of reporting them in detail. 
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Region 11: 27 - 1 

For this region, in which the viscous terms are of relatively small importance, we make 
a slight departure from the notation of BS and write 

7 = a ~ z - a ~ g ( ~ ) ,  G = +K(7,7) , )  

where a is a constant and g(7)  a function of 7,  both of which have to be found. It will 
emerge later that g ( ~ ) / l o g ~  remains finite as 7 3 0. The equations satisfied by K ,  H 
are then 

- 7HTr = 2HH,,,, + K2 - H t  + 2 - 72 + U ~ ~ ~ H , , , , , ,  ( 2 . 4 ~ )  

- TK, = 2HK, - 2Hq K + aVK,,. (2 .4b)  

The boundary conditions to be satisfied by H, K are that the solution in region I1 
must match smoothly with those in regions I and 111. We now assume that H ,  K may 
be expanded as series in ascending powers of 7 in the form 

H(7 ,T)  = H&7) +7Hi(7) + -.., (2 .5a )  

K(7,  7 )  = Ko(7) + ~ K l ( 7 )  + . ., (2 .5b)  

and allow also for the possibility that at same later stage the expansions may contain 
powers of log 7. 

In  order that the forms (2.2) and (2.6) should blend smoothly across the boundary 
of regions I and I1 ( z  3 co, 7 -+ 0), we must have Ho(0) = 0,  Ko(0) = 0,  HA(0) = 4, and so 

(2 .6)  

where p is another constant to be found. This result was first derived in BS. Continuing 
the expansion we find that 

Ho(7) = -Ko(7) = B[sin7+B(1-COs7)1, 

Hl(7 )  = A(1-  2Hi )  +B(4Ho+r](l  - 2Hi)  

+ C((  1 - 2Hi )  log (1 - cos 7) +/3sin 7 + 2 cos 7 -p2( 1 - cos 7)) ( 2 . 7 ~ )  

(2 .7b )  

where A ,  B, C are constants, and primes denote differentiation with respect to 7. 
BS wrongly assumed that (2 .5)  holds in both regions I and 11, and also set C = 0 to 
exclude the logarithmic singularity at 7 = 0. The introduction of region I makes this 
an unnecessary restriction. The match between regions I and I1 is effected by expand- 
ing H ,  K in ascending powers of 7 and then using (2 .3 )  to expand F ,  G in descending 
powers of z with z & g(7 ) .  We obtain, for F, 

Kl(7)  = ~ A H ~ + ~ B ( ~ H ~ - H ~ ) + C ( ~ H ~ ~ O ~ ( ~ - C O S ~ ) + / Y ~ ( I  - c o s ~ ) - c o s ~ ) ,  

F - + i a j z 2  - 2Cpz log z + - + #g’( 7 )  [:: ] 
+ z [  - * a / 3 g ( ~ )  - Cplog 4 ~ ~ 7 ~  - AB+ 2B + Cp] + ..., (2 .8)  

the terms omitted being either small when z is large or O(g2). Thus in order to match 
with (2.2) we must have 

(2 .9 )  
4 c  
a g(7)+-10g7 = 0(1), 

17-2 
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as 7 + 0, and then 

asz+oo. 
A similar form to (2.8) can be written down for G when 7 is small, 7 is small and 

z 9 g(7). With the requirement that it must match with (2.2), we find that again 
(2.9) must hold and 
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Fo(z) = &a/?z2-2C/?zlogz+O(z), (2.10) 

Go@) = -&az+2Clogz+O(1), (2.11) 

as z -+ 00. Both in (2.10) and (2.11) the leading terms omitted can be expressed in 
terms of A,  C, a, /? but further terms depend on the higher-order terms of the expan- 
sions of H, K in ascending powers of 7 and, possibly, powers of logr. 

Region I I I :  7 > 2n 

The solution in region I1 cannot satisfy the boundary condition (1 .3~)  as z + 00 for 
7 > 0, and so there must be a region beyond it where F, and G are both O(1). A match 
between these two regions must be effected when K, H - 47 are small, i.e. when 7 is 
an integral multiple .of 2n. The situation is thus similar to that investigated by 
Ockendon (1972), in the theory of steady flow over a rotating disk. A study of the 
numerical solution in our problem shows that in fact the transition occurs in the neigh- 
bourhood of 7 = 277. We therefore write 

z=-+z 277 , 7=2n+?f ,  (2.12) 
a7 

whereupon the forms of H and K near ?f = 0 are the same, to O(T) ,  as those near 7 = 0, 
provided that A is replaced by A + 2nB. Hence we can expect that if in region I11 
Z = O( 1) and F + n/m2 and G are expanded, broadly, in powers of 7 ,  as in (2.2), a 
match can be effected with the solution in region I1 by taking the double limit 
2 + - co, f -+ 0. The use of the word broadly is to permit this expansion to include 
powers of log7 which could reasonably be excluded from (2.2) but not from the 
expansion when Z = O(1). Using a similar argument to that which led to (2.6), (2.7), 
we have 

n 
F=--+&z)+0(1), a72 G = G , ( Z ) + o ( i ) ,  (2.13) 

as 7 -+ 0 in region 111, where + 0, Go + 1 as Z -+ CO, and 

Po = &q3z2- 2cpz10g 121 +O(Z) \  
(2.14) 

8, = - gaz + 2 ~ l o g  121 + O(I) J 
as Z -+ -co. 

This completes the description of the principal features of the asymptotic solution 
of the governing equations. BZ noted that a triple-layered solution emerges when 
higher-order terms are taken into account, but did not elaborate further. They added 
terms o ( 7 l o g ~ )  to (2.5) in their modification to the expansion proposed by BS, which 
may be interpreted as equivalent to introducing g(7 ) .  The term proportional to C in 
(2.7) was omitted, however, and so their expansion is still incomplete. 
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3. Numerical methods and results 
Two numerical methods were employed to solve the governing equations (1.2), and 

in both the variable z was replaced by Y = z / t i  in order to avoid a local singularity at 
t = 0.  A full discussion of the solution properties when t Q 1 is given by BZ. 

The first method is in essence the same as that used by BS, except for the use of Y 
as one of the independent variables. It is based on the Crank-Nicholson central- 
difference scheme and is discussed in detail in their paper. The step length At in t was 
taken as 0.005 for t < 2 and 0.001 for t =- 2, and uniform step lengths AY in Y were 
used, being either 0.20 or 0.10. In all cases the outer edge of the computational mesh 
was placed at Y = 200. The final results were obtained by h2 extrapolation. 

In the second method the equations were reduced to five first-order partial differen- 
tial equations in f = Ft*. u = af/aY,  v = au/aY, G and k = BG/aY, which were then 
integrated using the Keller box scheme (Cebeci & Bradshaw 1977). The advantage of 
this scheme is that a variable step size A Y in Y is easy to implement, which is helpful 
near the singularity when it is necessary to extend the range of Y to about 250. In  
fact the step lengths chosen were A Y = 0.1 or 0.05 for the first 80 steps, A Y = 0.4 for 
the next 40 steps, AY = 0.8 for the next 20, and AY = 1.6 for the last 150. The step 
lengths At in t were 0.05 for t c 2, 0.005 for 2 < t c 2.26 and 0.001 for t 2 2-26. Again 
h2 extrapolation was used to deduce the data for comparison with the analysis 

The method used by BZ is similar to our first method, and it is possible to make use 
of some of their data for comparison with the asymptotic theory. 

All these methods lead to data which are close together but not identical. For 
example at t = 2.25, the first method yields P(m, t )  = - 245.38, the second - 248.84, 
while BZ obtain - 245.5. Incidently, BS obtained - 220-9, but we now regard their 
results as less accurate than the others and shall discard them. The principal reasons 
for the differences between the other three methods are, in our view, the errors in- 
herent in any numerical scheme, which is often merely asymptotic, a lack of sufficient 
care about the extrapolations to zero step size, especially when t < 2, and the effect of 
using a finite outer boundary for Y .  We are not able to give an opinion on which set 
of data is the most accurate. An extraordinary effort would be needed, and we do not 
believe that any additional insight into the nature of the singularity will result. Only 
the details of the reduction of the data from the BS scheme will be presented, but we 
shall include in our discussions some of the results from the other schemes. 

The studies by BS and BZ demonstrated that there is almost certainly a singularity 
at a finite value ts oft and that the solution structure is close to the form predicted by 
(2.6). Moreover, the two components of the skin friction are smooth functions of 7 in 
the neighbourhood of 7 = 0 and we shall regard this as convincing evidence in favour 
of the structure proposed for region I. We shall concentrate our attention therefore on 
region I1 and begin by setting out in table 1 the extrapolated values of P(m,t) ,  
z,+(t), the value of x at which G achieves its maximum value Gmax(l), and of za-(t) ,  
Gmln, zB, Fsmin defined in similar ways. 

of $2.  

From the analysis of $ 2  we see that as 7 + 0, 
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t 

2.0 
2.1 
2.2 
2.25 
2.26 
2.27 
2.28 
2.29 
2.30 
2.31 
2.32 

ZG+ 

10-027 
13.904 
23-072 
34.284 
37.927 
42.409 
48.051 
55.365 
65.212 
79.152 

100.27 

ZG- 

1.238 
2.354 
4.749 
7.676 
8.636 
9.822 

11.325 
13.285 
15.939 
19.724 
25.533 

ZF amax 

5.509 1.968 
7.915 2.686 

13-620 4.368 
20.651 6.402 
22-946 7.059 
25.772 7.865 
29.337 8.877 
33.966 10.186 
40.209 11.944 
49-070 14.427 
62.596 18.206 

TABLE 1. 

- 
1.123 
1.433 
2.241 

3.575 
3.978 
4.484 
6.139 
6.01 9 
7.264 
9.158 

3.948 

- ’Emin 

2.772 
3,907 
6.446 
9.455 

10.42 1 
11.606 
13.091 
16.010 
17.582 
21.215 
26.731 

-F(Q t )  
22-21 1 
42.973 

114.81 
245.38 
297.80 
368.98 
469.05 
616.07 
844.74 

1228.9 
1949.5 

t 

2.0 
2.1 
2.2 
2.25 
2-26 
2-27 
2.28 
2.29 
2.30 
2.31 
2.32 

Fo 
0-30 
0.32 
0.34 
0.34 
0.34 
0.33 
0.33 
0.34 
0.36 
0.52 
1-28 

M 
0.5706 
0.5336 
0.5131 
0-5074 
0.5065 
0-5058 
0.6051 
0-5045 
0-5040 
0-5035 
0.5031 

* - a,, 
- 0.001 

0.042 
0.082 
0.048 
0.101 
0.104 
0.107 
0.109 
0.111 
0.112 
0.109 

TABLE 2. 

a:In 
-0.134 
- 0.062 
- 0.005 

0.018 
0.023 
0.026 
0.030 
0.034 
0.039 
0-042 
0.045 

F L n  
0.101 
0.077 
0.051 
0.036 
0.033 
0.030 
0.027 
0.022 
0.019 
0.015 
0.01 1 

where F, is strictly o(7-l) but in fact turns out to have a finite limit. This prediction 
is a strong test of the theory, but, if successful, should provide good estimates for a 
and ts .  After some trials we took 

ts  N 2.35851, a N 1.0858, (3.2) 

and the values of Po obtained from table 1 are shown in table 2. 
It is clear that with these choices for t ,  and a, F, is approximately equal to 0.34. 

The use of the secondnumerical method leads to similar results, except that a = 1.0712, 
ts = 2.35851 and Po 2: 0-27. BZ quotes a N 1.09, ts N 2.3585, but we think these 
numbers may be refined to a II 1.0852, ts  N- 2.35851, and then Fo N_ 0.34. In the 
earliest, but less careful, calculation BS obtained a N 1.1, ts  N 2.365, but, using 
table 1 of their paper, we may refine these numbers to a N- 1.066, tB N- 2.364, and 
then J” N 0.3. 

In order to deduce the value of /3 we examine the asymptotic forms of Qmax, Gmin 
and F,,,,. These follow from (2.6)-(2.8) and are 

( 3 . 3 4  

(3.3b) 

1 
G,,, = G (  (1  +p2)’ -/3) (1 + 2(B- C/3) 7 + . . .), 

occurring at 
1 

?la+ = -arctan- + ~ + O ( T ) ,  
B 
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1 
Gmin = -5 [( 1 +B2)' +PI [I + 2(B-CB) 7 + . - -1, 

occurring at 
1 

qa- = - arctan - + 0(7) ,  
B 

and 
1 

27 4 m i n  = --[I + (1 +Pa)'] + (CB- B) [( 1 +B2))'- 11 + . 9 

occurring at 
1 

qp = - arctan- + &r + o(7). 
B 

Thus a good estimate for /l can be obtained by computing 

The results are tabulated in table 2; we infer that 

h2 = 0*6025+0*4272+ ..., 
fits the data well and leads to 

$2: - 0.3509. 
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( 3 . 4 ~ )  

(3.4b) 

( 3 . 5 ~ )  

(3.5b) 

BZ gave /3 21 - 0.32, while our second numerical method leads to /l 21 - 0.3451. 
These estimates for a, te and B may now be tested by computing 

1 Gmx * = Gmax-5[(1+B2)'-/31 = [ ( l+ /32)+-B](B-cB)+O(7) ,  ( 3 . 9 ~ )  

1 
G i n  = Gmin+g[(1 +B2) +PI = - [(I +B2)'+/31 (B- QB) + 0(7)9 (3.9b) 

1 
FZmin = & m i n + z  [ 1 + (1 +Be)'] = - [( 1 +B2)' - 13 [B- CB] + O(7). ( 3 . 9 ~ )  

These are also set out in table 2. The linear character of the three functions for small 
values of 7 is well brought out, and indeed if we ignore the final row of the table we 
infer that 

GZax +- 0-12, GZln + 0.062, Fzmln + 0.009 as 7 + 0. (3.10) 
If we choose 

B-BC = -0.oa7 (3.11) 

and make use of (3.8), (3.9), the mymptotic theory predicts the values - 0.122,0.062, 
0.006 respectively for these limits, in good agreement with (3.10). 

Finally, we can test the prediction of (2.6) by computing the values of 

l) 

1 
2;+(7) = - z8+(7) + (n - arctan - 

B '  
1 1 

z3;-(7) = -z&) --arctan- 
ar B' 

(3.12a) 

(3.12b) 

(3 .12~)  
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t 
2.0 
2.1 
2.2 
2-25 
2.26 
2.27 
2.28 
2.29 
2.30 
2.31 
2.32 

2: + 
1.212 
1.682 
2.348 
2-847 
2.973 
3.113 
3.268 
3.445 
3.850 
3.904 
4.350 

TABLE 3. 

2: - 
1.931 
2.040 
2-417 
2.792 
2.894 
3.010 
3-142 
3.294 
3.474 
3.690 
3.960 

e z  

1.695 
2.075 
2-673 
3.148 
3.270 
3.405 
3.556 
3.728 
3.928 
4.165 
4.462 

3.0. 

1 -0 2.1 2.2 2.25 2.30 2.32 

I *o 1 *5 2.0 2.5 3.0 
Log ( 1 /cuy) 

FIGURE 1. Graphs of zz+, 2:- and z*p against log ( l / ~ ) .  The solid lines represent the results 
using the Crank-Nicholson method of integration, and the points marked + , 0, are the corre- 
sponding results using the method based on the Keller-box scheme. 

According to the asymptotic theory the functions on the left-hand side of (3.12) 
should asymptote to 

%lOgU7+D( a ) (3.13) 

as 7 --f 0, where the D( ) are constants with 

(3.14) 

2B 2C (1+PZ)*-/9 
D ( G + ) - D ( G - )  = ------log 

a a (1+/32)*+/9 '  

U ( l + p p +  1' 

B 2C (1+/3')*-/9 D ( Q + ) - D ( F )  = --7Falog 
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In  table 3 we give the values of z*(T) ,  and in figure 1 confirm that they are linear 
functions of logo17 over the range 2-26 < t < 2.31. The estimated values of 4C/a for 
all three of them are about the same, and approximately equal to -1.3. Thus 
C 2: -0.35 and B 2: 0-037, from (3.11). Further, D ( G + ) - D ( G - )  N 0.31 and 
D(O+ ) -D(P)  N - 0.26. With C 1: - 0.35, (3.14) then gives values of 0.024 and 
0.005 for B, so that the three estimates are close together. Similar sets of results for 
z*(7)  are obtained by using the second method, and are also displayed in figure 1.  
Comparisons have been made with the entire profiles of G and Fz (Simpson 1982), 
and are favourable. 

We conclude that the unsteady boundary layer on a rotating disk in a counter- 
rotating fluid does develop a singularity after a finite time, and that the principal 
properties of the structure of the singularity are correctly described by the asymp- 
totic expansion in Q 2. 
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